
Generic Vector Problems

- 1. A small child is lost in the woods. From his initial starting point, he wanders 500 m east, then 200 m north, then 200 m east then 600 m south then 300 m west.
 - a. Graphically represent his wanderings to find his final displacement vector.

- b. Algebraically calculate his final displacement vector (unit vector form.)
- c. Algebraically calculate the magnitude and direction of his displacement vector.
- 2. Vector A is $5\mathbf{i} + 8\mathbf{j} 7\mathbf{k}$ and vector B is $3\mathbf{i} 4\mathbf{j} + 2\mathbf{k}$.
 - a. What is $\vec{A} + \vec{B}$?
 - b. What is $\vec{A} \vec{B}$?
 - c. What is $3\vec{A}$?
 - d. What is the magnitude of \vec{B} ? (usually written as $|\vec{B}|$, or simply B)
- 3. A ball is thrown with an initial velocity of 30 m/s at an angle of 35° up from the horizontal.
 - a. What is this velocity in unit-vector form?

Generic Vector Problems

- b. If you added a velocity of 40 m/s straight down (-40j), what is the final velocity?
- 4. Add these vectors. Clearly mark the resultant vector.

- 5. A car's velocity vector is given by $30\mathbf{i} + 40\mathbf{j}$. Give a vector that has the same magnitude, but is perpendicular to the first vector, and in the \mathbf{i} - \mathbf{j} plane.
- 6. A projectile has an initial velocity of 7**i** +12**j** m/s. What is a velocity that is complimentary to that initial angle and has the same magnitude?
- 7. Sketch each of the following vectors and give it in magnitude and direction form. a. $5\mathbf{i} + 10\mathbf{j}$ b. $-6\mathbf{i} + 8\mathbf{j}$ c. $300\mathbf{i} + 100\mathbf{j}$ d. $45\mathbf{i} 23\mathbf{j}$

Generic Vector Problems

- 8. Sketch each of the following vectors and give it in unit-vector form. a. $250 \text{ m/s} \ @ 30^{\circ}$ b. $17 \text{ m/s}^2 \ @ 120^{\circ}$ c. $5 \text{ m} \ @ -65^{\circ}$
- d. 75 m/s @ 200°

- 9. What are the properties of two vectors \mathbf{a} and \mathbf{b} such that a. $\mathbf{a} + \mathbf{b} = \mathbf{c}$ and $\mathbf{a} + \mathbf{b} = \mathbf{c}$;
 - b. a + b = a b;
 - c. $\mathbf{a} + \mathbf{b} = \mathbf{c}$ and $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$?

Extra! Prove the Pythagorean Theorem and the Law of Cosines. (On separate sheet of paper.)

Answers:

1 b)
$$400\mathbf{i} - 400\mathbf{j}$$
c) $566 @ -45^{\circ}$
2. a) $8\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$
b) $2\mathbf{i} + 12\mathbf{j} - 9\mathbf{k}$
c) $15\mathbf{i} + 24\mathbf{j} - 21\mathbf{k}$

d) 5.39
3 a) $24.6\mathbf{i} + 17.2\mathbf{j}$ m/s
b) $24.6\mathbf{i} - 22.8\mathbf{j}$
5) $-40\mathbf{i} + 30\mathbf{j}$
6) $12\mathbf{i} + 7\mathbf{j}$ m/s

7 a) $11.2 @ 63.4^{\circ}$
b) $10 @ 127^{\circ}$
c) $316 @ 18.4^{\circ}$
d) $51 @ -27^{\circ}$
8 a) $217\mathbf{i} + 125\mathbf{j}$ m/s

b) $-8.5\mathbf{i} + 14.7\mathbf{j}$ m/s²
c) $2.1\mathbf{i} - 4.5\mathbf{j}$ m
d) $-70.5\mathbf{i} - 25.7\mathbf{j}$ m/s
9 a) $\mathbf{a} \parallel \mathbf{b}$
b) $\mathbf{b} = 0$
c) $\mathbf{a} \perp \mathbf{b}$